Formal System Modelling using Event-B

- First-order logic + Set theory
- Discrete transition systems
- **Refinement**: Gradually introduce model details
- **Formal proof**: Strong assurance that the system satisfies safety and security properties for all instantiations
- **Analysis**: Model checker to find counter-example
- **Validation**: Animation to ensure that the system meets its requirements

\[
\begin{align*}
M_0 & \quad \text{satisfies} \quad \phi_0 \\
M_1 & \quad \text{satisfies} \quad \phi_1 \\
M_2 & \quad \text{satisfies} \quad \phi_2
\end{align*}
\]

Formal System Modelling using iUML-B

- "UML-like" diagrammatic notation
- **Formal semantics** is given in Event-B.
- **Class diagrams** visually model data relationships
- **State-machines** visually model system dynamic behaviour

Ensuring Safety of a Multi-UAV System

Context
- Multiple UAVs “controlled” by a base station
- The routes are sent to UAVs
- **Collision-free**: No collision between any pair of UAVs
- **Restricted air space**: UAVs must avoid restricted air space

Objectives
- Develop architecture pattern and verification method for assurance of multi-UAV coordination system.

Challenges
- Complex path-planning algorithm
- Combination of human operator / automated algorithm

Approach
- **Architecture**: Separate movement generation from movement validation via policing function.
- **Verification**: Focus formal modelling and verification on safety policing function

Rationale
- Movement generation can be non-deterministic and difficult to formalise.
- Safety properties can be characterised and formally verified.
- Algorithms can be improved or swapped out without changing the validation approach.

(Joint work with Tekever Ltd., Southampton)

Analysing Security Protocols using Refinement

Context
- Network divided into virtual LAN (VLAN)
- Packages are tagged with VLAN ID.
- Packages for native VLAN do not required tagging
- A package must only be seen by nodes in the same VLAN as the device that made it.

Objectives
- Building approach for develop, analyse, and verify network protocols.

Challenges
- Properties must hold for any network configuration

Approach
- Build an abstract model of the security property
 - iUML-B class diagrams show entity relationship
 - Security properties model as invariants
- Refines to introduce design that achieves security
 - iUML-B state-machines show the behaviour of the design
 - V&V by animation, model checker, theorem provers

Rationale
- Identify different points leading to security breach
 - A security attack is initiated (e.g., double tagging)
 - Design assumptions are violated (e.g., tagging assumption)
 - Security is breached (e.g, packages to wrong VLAN)

(Case study provided by Airbus, part of Enable-S3 project)